

Long Lake Governmental Lake Board

7900 South Westnedge Avenue Portage, MI 49002 www.longlakeimprovementboard.org

John Speeter, Chair

Long Lake Resident Representative

Claudette Reid, Secretary
City of Portage Representative

Greg Thomas, Treasurer
Pavilion Township Representative

John Gisler

Kalamazoo County Commissioner

Jason Wiersma

Kalamazoo County Drain Commissioner

Long Lake Association

www.longlakeassociation.website

John Speeter, President

Dave Steffens, Vice-President

Erin Dey, Secretary

Brian Krol, Treasurer

John Zuidema, Board Member

Dale Lorbeck, Board Member

Bill Green, Board Member

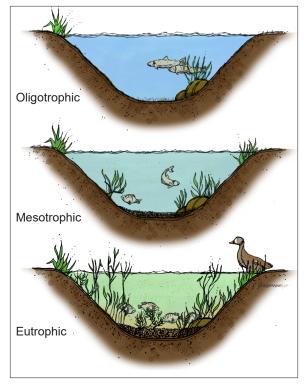
Tom O'Malley, Board Member

Long Lake 2021 Water Quality Report

A publication of the Long Lake Governmental Lake Board

Water quality monitoring on Long Lake has been ongoing since 2017. This report provides background information on lake water quality and a discussion of sampling results.

Lakes can be classified into three broad categories based on their productivity or ability to support plant and animal life. The three basic lake classifications are oligotrophic, mesotrophic, and eutrophic.


Oligotrophic lakes are generally deep and clear with little aquatic plant growth.

These lakes maintain sufficient dissolved oxygen in the cool, deep bottom waters during late summer to support cold water fish such as trout and whitefish.

Eutrophic lakes have poor clarity, and support abundant aquatic plant growth. In deep eutrophic lakes, the cool bottom waters usually contain little or no dissolved oxygen. Therefore, these lakes can only support warm water fish such as bass and pike.

Lakes that fall between the two extremes of oligotrophic and eutrophic are called *mesotrophic* lakes.

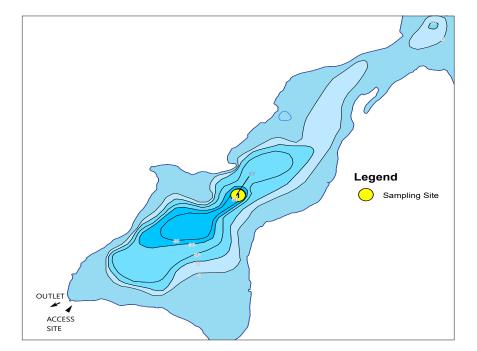
Under natural conditions, most lakes will ultimately evolve to a eutrophic state as they gradually fill with sediment and organic

Lake trophic states.

matter transported to the lake from the surrounding watershed. As the lake becomes shallower, the process accelerates. When aquatic plants become abundant, the lake slowly begins to fill in as sediment and decaying plant matter accumulate on the lake bottom. Eventually, terrestrial plants become established and the lake is transformed to a marshland. The natural lake aging process can be greatly accelerated if excessive amounts of sediment and nutrients (which stimulate aquatic plant growth) enter the lake from the surrounding watershed. Because these added inputs are usually associated with human activity, this accelerated lake aging process is often referred to as *cultural eutrophication*.

For more information, visit: www.michiganlakeinfo.com/trophic-state

Key parameters used to evaluate a lake's productivity or trophic state include total phosphorus, chlorophyll-a, and Secchi transparency.


Phosphorus is the nutrient that most often stimulates excessive growth of aquatic plants and causes premature lake aging. By measuring phosphorus levels, it is possible to gauge the overall health of a lake.

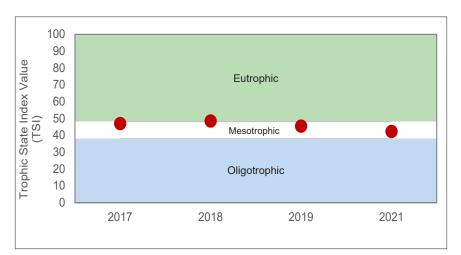
Chlorophyll-a is a pigment that imparts the green color to plants and algae. A rough estimate of the quantity of algae present in the water column can be made by measuring the amount of chlorophyll-a in the water column.

A Secchi disk is a round, black and white, 8-inch disk that is used to estimate water clarity. Generally, it has been found that plants can grow to a depth of about twice the Secchi disk transparency.

Generally, as phosphorus inputs to a lake increase, algae growth and chlorophyll-a increase and Secchi transparency decreases.

TROPHIC CLASSIFICATION CRITERIA				
Lake Classification	Total Phosphorus (µg/L)¹	Chlorophyll- <i>a</i> (μg/L) ¹	Secchi Transparency (feet)	
Oligotrophic	Less than 10	Less than 2.2	Greater than 15.0	
Mesotrophic	10 to 20	2.2 to 6.0	7.5 to 15.0	
Eutrophic	Greater than 20	Greater than 6.0	Less than 7.5	

A composite sampler used to collect chlorophyll-a samples


In 2021, samples were collected during spring and summer at ten foot intervals over the deepest basin of Long Lake.

¹ μ g/L = micrograms per liter = parts per billion.

Carlson's Trophic State Index (TSI) was developed from mathematical relationships that allowed phosphorus, chlorophyll-a, and Secchi transparency readings to be converted to a numerical scale from 0 to 100, with increasing numbers indicating more productive lakes. The TSI can be used to rate the trophic state of Michigan lakes as follows:

TSI INDEX FOR MICHIGAN				
Trophic State	TSI Value			
Oligotrophic	Less than 38			
Mesotrophic	38 to 48			
Eutrophic	Greater than 48			

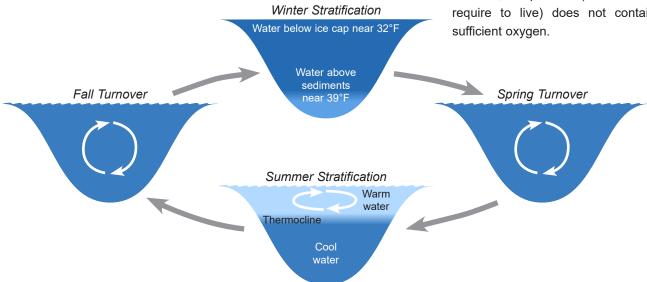
The average TSI values for Long Lake based on spring phosphorus and summer chlorophyll-a and Secchi transparency data collected between 2017 and 2021 are shown below.

Long Lake average Trophic State Index (TSI) values.

Sampling to date indicates that Long Lake is mesotrophic. That is, Long Lake exhibits somewhat elevated spring phosphorus levels, low summer chlorophyll-a concentrations, and moderate water clarity.

Spring sampling was not conducted in 2020 due to pandemic restrictions, therefore, TSI could not be calculated.

For more information, visit: michiganlakeinfo.com/turnover-and-stratification


Temperature

4

Temperature is important in determining the type of organisms that may live in a lake. For example, trout prefer temperatures below 68°F. Temperature also determines how water mixes in a lake. As the ice cover breaks up on a lake in the spring, the water temperature becomes uniform from the surface to the bottom. This period is referred to as spring turnover because water mixes throughout the entire water column. As the surface waters warm, they are underlain by a colder, more dense layer of water. This process is called thermal stratification. In deeper lakes during summer there are three distinct layers. This is referred to as *summer stratification*. Once thermal stratification occurs, there is little mixing of the warm surface waters with the cooler bottom waters. The transition layer that separates these layers is referred to as the thermocline. The thermocline is characterized as the zone where temperature drops rapidly with depth. As fall approaches, the warm surface waters begin to cool and become more dense. Eventually, the surface temperature drops to a point that allows the lake to undergo complete mixing. This period is referred to as fall turnover. As the season progresses and ice begins to form on the lake, the lake may stratify again. However, during winter stratification, the surface waters (at or near 32°F) are underlain by slightly warmer water (about 39°F). This is sometimes referred to as inverse stratification and occurs because water is most dense at a temperature of about 39°F. As the lake ice melts in the spring, these stratification cycles are repeated. These stratification cycles occur in deep lakes but not in shallow lakes or ponds. Lakes that are about 15 to 30 feet deep may stratify and destratify with storm events several times during the year. Long Lake's thermocline typically sets up at a depth of about twenty feet by late summer.

Dissolved Oxygen

An important factor influencing lake water quality is the quantity of dissolved oxygen in the water column. The major inputs of dissolved oxygen to lakes are the atmosphere and photosynthetic activity by aquatic plants. An oxygen level of about 5 mg/L (milligrams per liter, or parts per million) is required to support warm-water fish. In lakes deep enough to exhibit thermal stratification, oxygen levels are often reduced or depleted below the thermocline once the lake has stratified. This is because deep water is cut off from plant photosynthesis and the atmosphere, and oxygen is consumed by bacteria that use oxygen as they decompose organic matter (plant and animal remains) at the bottom of the lake. Bottomwater oxygen depletion is a common occurrence in eutrophic and some mesotrophic lakes. Thus, eutrophic and most mesotrophic lakes cannot support cold-water fish because the cool, deep water (that the fish require to live) does not contain

